

GNSS NLOS Pseudorange Correction based on Skymask for Smartphone Applications

Hoi-Fung Ng, Guohao Zhang and Li-Ta Hsu (Presenter)

Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University

Session A1: Applications of Raw GNSS Measurements from Smartphones

ION GNSS+ 2019, Miami, Florida

Background

- GNSS Positioning is Triangulation.
- Distance between satellite and receiver is calculated by time of transmission × speed of light.

Widely available 3D building model now!

Popular 3DMA (3D mapping aided) GNSS

Shadow matching (Satellite Visibility)

GNSS Ray-tracing (Range and C/N_0)

Jber Engineering	$\sigma \equiv$
Central Engineering Rethinking GPS: Engineering Location at Uber	Next-Gen
	ACT

Rethinking GPS: Engineering Next-Gen Location at Uber

Ray-tracing is essential?

- Example: A typical urban canyon in Hong Kong.
- 20 out of 27 pseudorange measurements are affected by NLOS reflection (Mi8).
- Instead of excluding or deweighting the NLOS measurement, we believe it is should be corrected and used.

Ray-Tracing 3DMA GNSS

3D map aided positioning method is a Particle filter based method

Using

- 1. Positioning solution
- 2. Pseudorange
- 3. Signal strength

Candidate grid distribution

- Conventional GPS positioning method
- With 25m radius, 2m separation

Candidate	Similarity
1	Very high
2	High
3	Low
4	Low

Simulated Pseudorange

Ray-Tracing 3DMA

Skymask 3DMA

Division of

THE HONG KONG

University

- Resource utilization (share resources with shadow matching)
- Provide NLOS correction
- Reduce computation load

Skymask

- <u>Skymask</u>: surrounding building boundaries are projected on the skyplot
- 360 elevation angle represents corresponding azimuth angle
- Satellite falls into 'shadow' should be blocked

Azimuth (degree)	Elevation (degree)
1	41.8
2	41.3
3	40.9
359	42.7
360	42.3

Offline Process – Skymask Generation

<u>Skymask table</u>: area of grid points to store the skymask & building height information

- Outside building: skymask
- Inside building: building height

• Finding elevation angle of reflecting point

• Finding azimuth angle of reflecting point

• Align axis in 'tidy aligned' environment

Ng, H-F., Zhang, G., Hsu, Li-Ta, April 8-12, 2019, "Range-based 3D Mapping Aided GNSS with NLOS Correction based on Skyplot with Building Boundaries," ION Pacific PNT 2019, Honolulu, HA, USA <u>Opening Minds • Shaping the Future • & ### # 14</u>

Determine Feature Points

Sudden change points - adjacent elevation > 2°, sudden jump on elevation angle, another building/new surface. If adjacent point labelled as 'changing point', not identify as a valid surface

Local minima, maxima - new surface

- Azimuth angles between two consecutive feature points will consider as one surface
- Except,
 - 1. Two adjacent azimuth are sudden change point
 - 2. Elevation angle is 0°

sciplinary Division of

Azimuth Angle of Reflecting Plane (AARP) Determination

Calculate AARP & Predict Incoming Angle Side View Top View

Predict incoming angle $\psi_{az} = 2\varphi_{az} - az$

HE HONG KONG

NIVERSITY

Law of reflection

- Getting horizontal distance between candidate and reflecting point & reflecting point actual position
- Calculate NLOS reflection delay

Flowchart of the Proposed 3DMA GNSS

Offline Process

Experiment Setup

- Samsung Galaxy Note 8 (Qualcomm Snapdragon 835), G/E/B single freq.
- Xiaomi Mi 8 (Broadcom BCM47755 chip), G/R/E/B single freq. (we used)
- Output rate: 1 Hz

		W	
Experiment	Duration (seconds)	Building height to street width ratio $\left(\frac{building \ height}{street \ width}\right)$	
1: static	687	2.17	
2: static	605	2.81	
3: static	916	3.88	
4: dynamic	66	0.68	
5: dynamic	101	2.83	

linary Division of

Tsim Sha Tsui

Yau Ma Tei

THE HONG KONG

港理工大學

(Mi 8)

Methods compared

- WLS: weighted-least-squared [1]
- SDM: GNSS shadow matching [2]

- [1] E. Realini and M. Reguzzoni, "GoGPS: open source code", 2013.
- [2] P. Groves and M. Adjrad, "Performance Assessment of 3D-Mapping-Aided GNSS - Part 1: Algorithms, User Equipment and Review," *Navigation: Journal of the Institute of Navigation*, 2019
- [3] P. Groves and M. Adjrad, "Likelihood-based GNSS positioning using LOS/NLOS predictions from 3D mapping and pseudoranges," *GPS Solutions*, 2017.
- LBR: likelihood-based 3DMA GNSS ranging [3]
- SKY: the proposed skymask 3DMA GNSS
- SDM + LBR: hypothesis domain integration of shadow matching and likelihood-based 3DMA GNSS ranging [2] $\Lambda_i = \Lambda_{i,SDM} \cdot \Lambda_{i,LBR}$
- SDM + SKY: hypothesis domain integration of shadow matching and skymask 3DMA $\Lambda_i = \Lambda_{i,SDM} \cdot \Lambda_{i,SKY}$
- SDM + LBR + SKY: hypothesis domain integration of shadow matching, likelihood-based 3DMA GNSS ranging, and skymask 3DMA

$$\Lambda_i = \Lambda_{i,SDM} \cdot \Lambda_{i,LBR} \cdot \Lambda_{i,SKY}$$

NIVERSITY

Experiment 1 – Static – H/W 2.17

Receiver	RMS error (m)	NMEA	WLS	SDM	LBR	SKY	SDM + LBR	SDM + SKY	SDM + LBR + SKY
	2D	34.64	32.15	31.48	23.96	24.94	21.05	23.67	17.35
Xiaomi	Along street	5.52	17.83	19.71	7.19	5.94	6.39	7.56	6.64
	Across street	34.19	26.75	24.54	22.85	24.22	20.06	22.43	16.03
	2D	20.49	118.32	11.46	14.94	15.46	14.95	12.47	14.37
Samsung Galaxy	Along street	4.17	42.88	8.00	8.90	9.06	10.13	5.67	11.37
Note 8	Across street	20.06	110.27	8.21	12.00	12.53	11.00	11.11	8.79

Experiment 2 – Static – H/W 2.81

Receiver	RMS error (m)	NMEA	WLS	SDM	LBR	SKY	SDM + LBR	SDM + SKY	SDM + LBR + SKY
	2D	5.95	18.77	6.13	7.19	7.38	5.73	5.87	5.66
Xiaomi	Along street	2.08	9.16	5.89	3.50	1.67	3.27	1.55	3.40
	Across street	5.58	16.38	1.70	6.28	7.19	4.70	5.67	4.52
	2D	12.10	132.40	5.55	17.03	13.31	17.24	11.44	19.13
Samsung Galaxy Note 8	Along street	7.21	73.70	4.23	6.10	5.28	6.04	4.35	6.15
	Across street	9.72	110.00	3.60	15.90	12.22	16.15	10.58	18.11

Experiment 3 – Static – H/W 3.88

Receiver	RMS error (m)	NMEA	WLS	SDM	LBR	SKY	SDM + LBR	SDM + SKY	SDM + LBR + SKY
	2D	14.61	26.61	11.54	18.51	17.25	15.53	14.22	12.79
Xiaomi	Along street	7.64	17.56	10.24	5.38	5.49	6.20	6.30	6.66
	Across street	12.45	20.00	5.32	17.71	16.35	14.24	12.74	10.92
	2D	6.64	115.72	17.10	19.55	6.99	17.66	5.26	18.28
Samsung Galaxy	Along street	5.83	67.28	17.01	17.44	6.11	16.21	4.76	16.64
Note 8	Across street	3.17	94.16	1.78	8.84	3.39	7.01	2.23	7.58

Experiment 4 – Dynamic – H/W 0.68

Receiver	RMS error (m)	NMEA	WLS	SDM	LBR	SKY	SDM + LBR	SDM + SKY	SDM + LBR + SKY
	2D	3.27	38.67	8.18	12.55	10.45	14.47	11.79	13.70
Xiaomi Mi 8	Along street	1.82	7.22	5.53	5.91	1.12	6.42	1.37	5.57
	Across street	2.72	37.99	6.03	11.08	10.39	12.97	11.71	12.51
	2D	3.13	114.62	7.16	23.60	10.23	21.34	12.79	23.15
Samsung Galaxy Note 8	Along street	2.23	98.43	4.02	12.87	3.44	11.47	4.04	12.65
	Across street	2.20	58.73	5.93	19.78	9.63	17.99	12.14	19.39

Experiment 4 – Dynamic – H/W 0.68

Experiment 5 – Dynamic – H/W 2.83

Receiver	RMS error (m)	NMEA	WLS	SDM	LBR	SKY	SDM + LBR	SDM + SKY	SDM + LBR + SKY
	2D	6.64	18.33	5.68	5.65	6.31	4.89	5.21	5.27
Xiaomi	Along street	3.39	14.57	4.51	5.01	5.75	4.67	4.93	4.90
	Across street	5.70	11.12	3.45	2.61	2.60	1.45	1.69	1.95
	2D	4.50	165.52	7.91	9.96	5.20	10.60	5.97	12.13
Samsung Galaxy	Along street	1.74	157.49	7.49	7.31	4.72	7.93	5.80	9.70
Note 8	Across street	4.15	50.91	2.55	6.76	2.20	7.03	1.43	7.28

Experiment 5 – Dynamic – H/W 2.83

NLOS reflection delay identified by three methods. In the case of H/W about 3

		Mean (m)	S.D. (m)
	Actual NLOS delay*	44.77	4.24
PRN 97 (TST)	Proposed skymask 3DMA	46.23	0.09
	Ray-tracing	44.2	0.08
	Actual NLOS delay*	8.15	2.17
PRN 93 (TW)	Proposed skymask 3DMA	8.13	0.01
	Ray-tracing	6.29	0.00

* Calculated by double-differencing the measurements from smartphone and reference station (Xu et al, 2019).

Xu B., Jia Q., Luo Y., Hsu, L.T.* (2019) Intelligent GPS L1 LOS/Multipath/NLOS Classifiers Based on Correlator-, RINEX-and NMEA-Level Measurements, *Remote Sensing*, 11(16):1851.

Comparison of Computation Load

Processing time for one epoch

Conclusions

- SDM+ SKY is stable even when the pseudorange measurement quality is not as good. (which LBR has higher requirement on it)
- When Height to Width (H/W) ratio is about 3, the proposed Skymask 3DMA GNSS is very effective. (due to the single-reflected NLOS).

Future Work

- To develop context awareness algorithm to classify the area that 3DMA GNSS is effective.
- To explore the potential of 3DMA GNSS in static RTK for the initial point of mobile mapping system.

Thank you for your attention \bigcirc <u>Q&A</u>

Li-Ta Hsu 許立達

If you have any questions or inquiries, please feel free to contract me.

lt.hsu@polyu.edu.hk

+852 - 3400 - 8061

/ Opening Minds • Shaping the Future • 啟迪思維 • 成就未來